Starting Soon:ITRC Ethylene Oxide (EtO)

Ethylene Oxide (EtO) Guidance

https://eto-1.itrcweb.org/

Use "Join Audio" option in lower left of Zoom webinar to listen to webinar Problems joining audio? Please call in manually

Dial In 312 626 6799

Webinar ID: 898 7781 5889#

Poll Question

Check In!

I represent...

- Industry/ Contractor
- □ State
- □ Tribal
- □ Federal
- Community
- Local Government
- □ Academic
- □ Other

Housekeeping

- This event is being recorded; Event will be available On Demand after the event
- If you have technical difficulties, please use the Q&A Pod to request technical support

ITRC – Shaping the Future of Regulatory Acceptance

Host Organization

Network - All 50 states, PR, DC

Federal Partners

DOE

DOD

EPA

ITRC Industry Affiliates Program

Academia

Community Stakeholders

Disclaimer

https://eto-1.itrcweb.org/about-itrc/#disclaimer

Partially funded by the US government

ITRC nor US government warranty material

ITRC nor US government endorse specific products

ITRC materials available for your use – see <u>usage policy</u>

EtO – What You Need to Know

Sponsored by: Interstate Technology and Regulatory Council (www.itrcweb.org)

Meet the ITRC Trainers

April Lazzaro

Michigan Department of Environment,
Great Lakes, and Energy

lazzaroa1@michigan.gov

Jaime Gore
Georgia Department of Natural
Resources
jaime.gore@dnr.ga.gov

Eric Rowland

Delaware Department of Natural
Resources and Environmental Control
eric.rowland@delaware.gov

Keisha Long
South Carolina Department of Health
and Environmental Control
longkd@dhec.sc.gov

DeAnna Oser
Georgia Department of Natural
Resources
deanna.oser@dnr.ga.gov

Lila Beckley
GSI Environmental Inc.
Imbeckley@gsi-net.com

Training Roadmap

ETO Training Introduction

Sources, Uses, & Exposure Pathways

Community & Stakeholder Communications

Control Technologies

Sampling & Monitoring

Regulations

Continuous Outreach & Resources

Q&A

What you will learn

- Characteristics of EtO
- Health Hazards of EtO
- Best practices for sampling and analysis
- Community engagement concepts
- What regulations apply?
- Learn where to get more help

CAUTION!
Emerging Contaminant –
Changing Regulatory Landscape



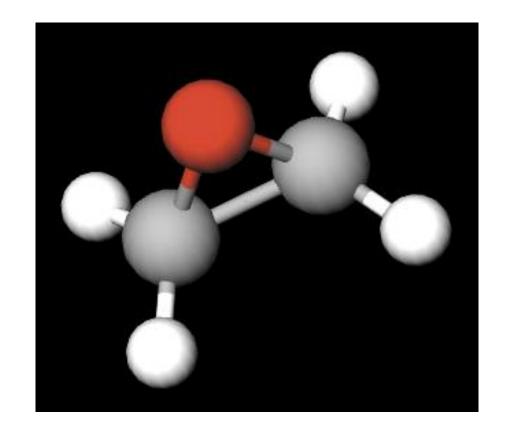
EtO Guide

- Developed by subject matter experts in the field of EtO
- Includes information on what we know **now**

Additional resources and links

Case Study – The Acme Company

EtO Sterilizer Case Study Mock-up



What is Ethylene Oxide (EtO)

Flammable, colorless, and reactive gas

Primary source industrial

Endogenous sources

Why EtO?

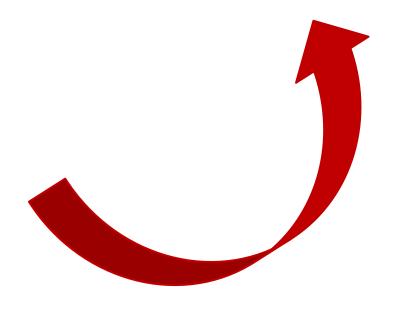
Categorized as a human carcinogen.*

One of 188 **listed hazardous air pollutants** (HAP) covered under Section 112 of the Clean Air Act (CAA).

In 2016, the USEPA classified EtO as "carcinogenic to humans"

USEPA analyses show that EtO emissions may pose a greater public health concern than previously realized

^{*} By the World Health Organization (WHO), the United States Environmental Protection Agency (USEPA), the Department of Health and Human Services (HHS), and other health agencies.



EtO Icon

Poll Question

What is your experience with EtO?

- No experience
- □ Some experience
- Moderate experience
- □ Lots of experience

Training Roadmap

ETO Training Introduction

Sources, Uses, & Exposure Pathways

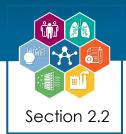
Community & Stakeholder Communications

Control Technologies

Sampling & Monitoring

Regulations

Continuous Outreach & Resources


Q&A

Production & Uses of Ethylene Oxide

Chemical intermediate: Used to make other chemicals, e.g., ethylene glycol (antifreeze, polyester fibers), surfactants (soap)

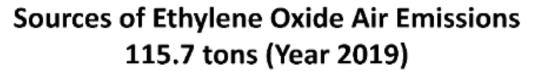
Commercial sterilization of medical devices and heat- and moisturesensitive equipment (e.g., bandages, disposable syringes, tubing)

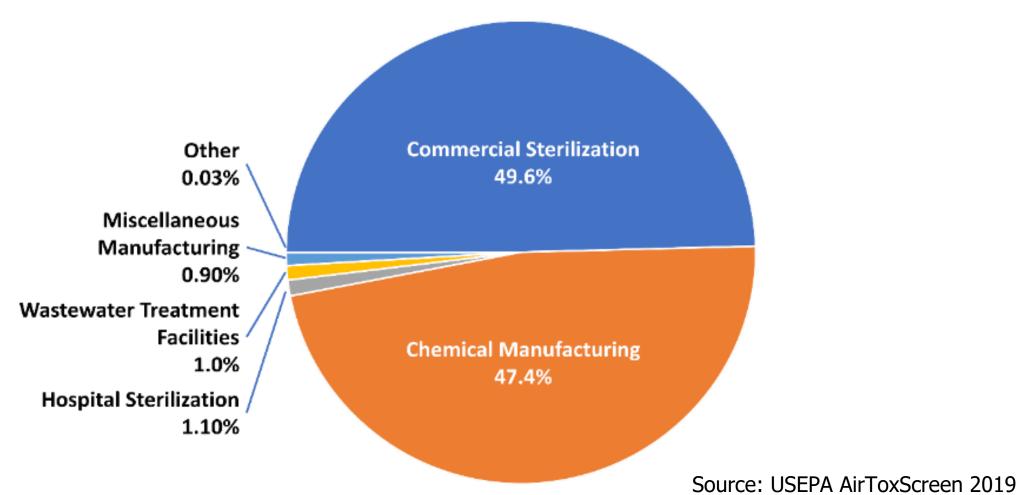
Non-commercial sterilization: hospital/clinic scale with benchtop sterilization units

Other uses: Fumigation of spices, pest control of imported goods (country dependent)

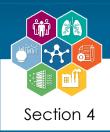
Poll Question

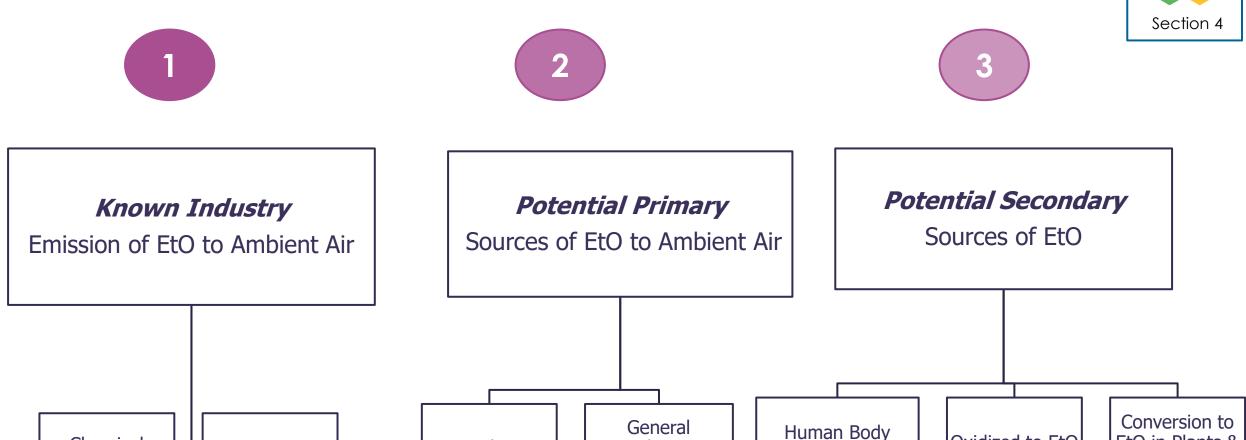
Check In!


Products that are made from EtO raw material include


- Carpet backing and furniture cushioning
- Motor vehicle antifreezes
- □ Personal care products
- All of the above
- None of the above

Emissions: Known Sources of EtO to Air


Known and Potential Sources of Ethylene Oxide


Smoking

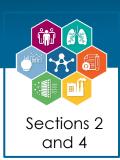
Chemical

Manufacturing

Sterilizers

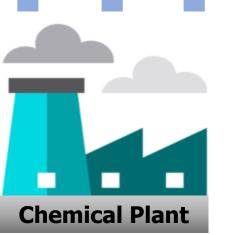
Combustion

Byproducts

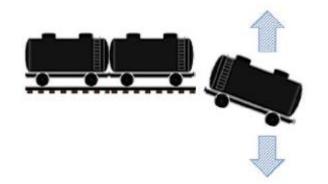

Metabolism

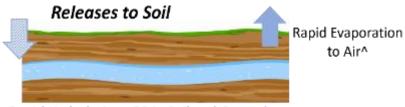
EtO in Plants &

Microorganisms


Oxidized to EtO

Releases of Ethylene Oxide into the Environment


Atmospheric half-life of 2-5 months


Accidental Spills during Transport

Rapid Evaporation to Air
(Half-Life of 1 Hour^*)

Ready Biodegradation to EG in Water (Half-Life of < 15 Days*^)

Rapid Hydrolysis to EG in Soil and Groundwater (Half-Life of 11–12 Days^)

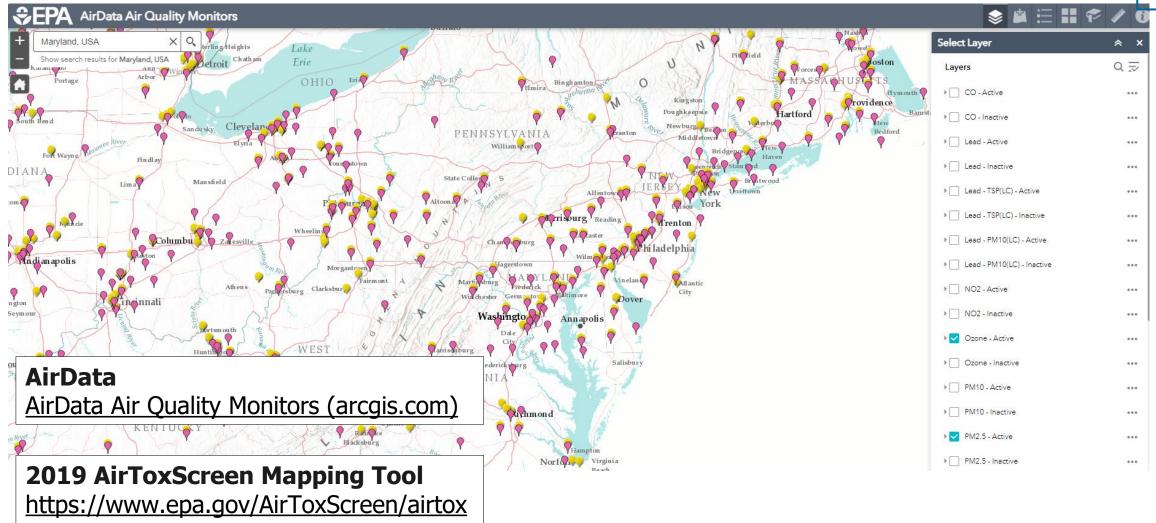
How Can I Be Exposed to EtO?

Sections 2.4 and 7.1

 Inhalation – the primary route of EtO exposure

Individual

Background



Tools for Learning About Air Quality

screen-mapping-tool

Training Roadmap

ETO Training Introduction

Sources, Uses, & Exposure Pathways

Community & Stakeholder Communications

Control Technologies

Sampling & Monitoring

Regulations

Continuous Outreach & Resources


Q&A

Who are the Stakeholders?

Communities and Communication

Early Stakeholder Engagement is Ideal

Active Listening

Explain Your Processes

Engaging with the Public

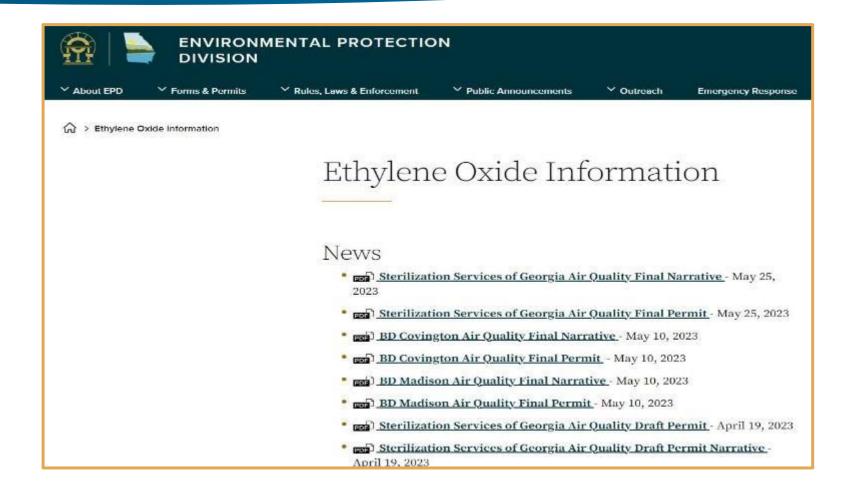
- Engage with stakeholders beforehand
- Gauge community interest
- Plan public meeting/hearing
- Logistics space/sizing
- Consider limited English proficiency community needs - assess if interpreter is needed.

Engaging with the Public

Engage with state and local health departments – Invite them to be present at the meeting

Be Transparent

Be Prepared


Case Study – Who to Contact?

- Fence line communities
- Local government officials
- State and local health officials
- Manufacturers and users of EtO
- Nearby businesses
- Employees at facilities that use EtO

Case Study – Engaging with the public

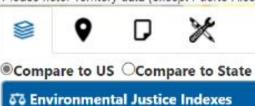
Update website – do what you say, say what you do!

Case Study – Your Team

Lifetime Residential Cancer Risks – EtO Sterilization ACME Company, Anywhere, USA

Case Study – What **Should** Be Communicated?

- Remember your audience
- Timely release of information


- Modeling results
- Next Steps

Environmental Justice (EJ)

EJScreen Website | Mobile | Glos ary , rielp

Please note: Territory data (except Puerto Rico) is not available as comparable to the US. It is only comparable to the territory itself by using the 'Compare to State' functionality. Likewise, some of the indicators Sections 7.2.1

Particulate Matter 2.5

Ozone

Diesel Particulate Matter

Air Toxics Cancer Risk

Air Toxics Respiratory HI

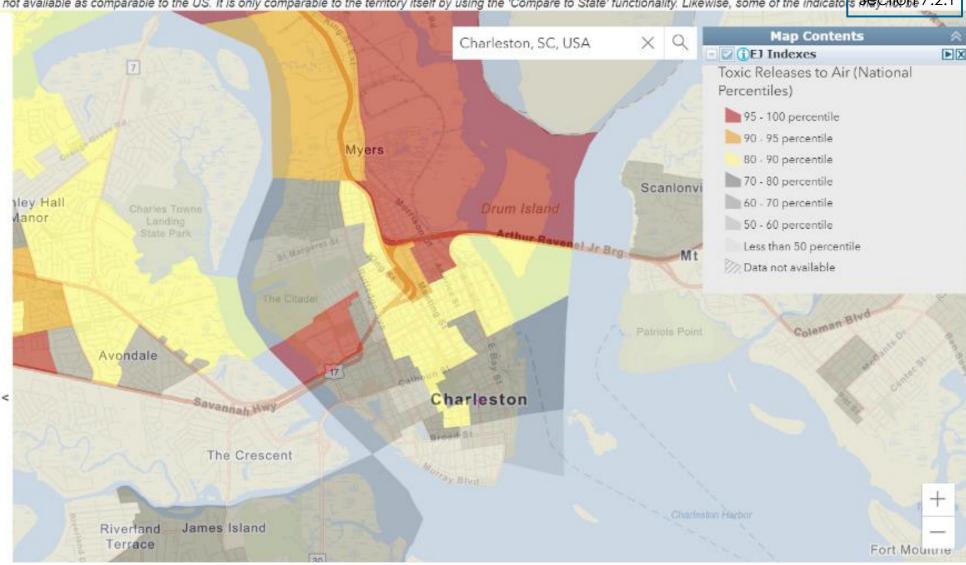
Toxic Releases to Air

Traffic Proximity

Lead Paint

Superfund Proximity

RMP Facility Proximity


Hazardous Waste Proximity

Underground Storage Tanks


Wastewater Discharge

■ Supplemental Indexes

mi Pollution and Sources

Additional EJ Resources

USEPA's <u>EnviroFacts</u>

Executive Order 14008 – Climate and Economic Justice Screening Tool

ATSDR's <u>Environmental Justice Index</u>

State-Specific Resources

National Tribal Air Association

Poll Question

Name a potential EtO stakeholder

□ Short answer

Training Roadmap

ETO Training Introduction

Sources, Uses, & Exposure Pathways

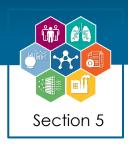
Community & Stakeholder Communications

Control Technologies

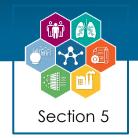
Sampling & Monitoring

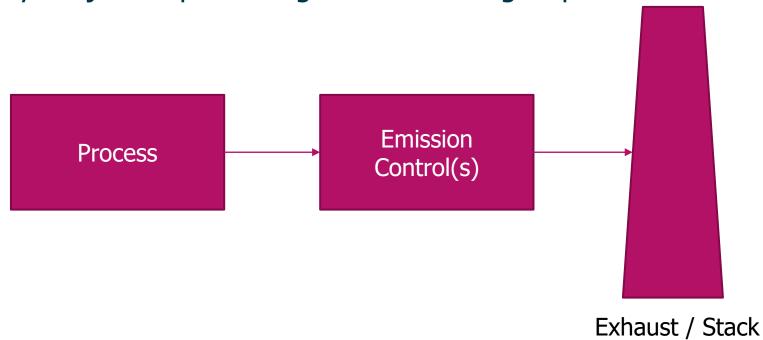
Regulations

Continuous Outreach & Resources


Q&A

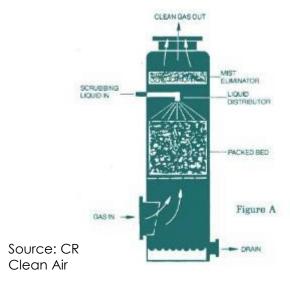
Control Technologies

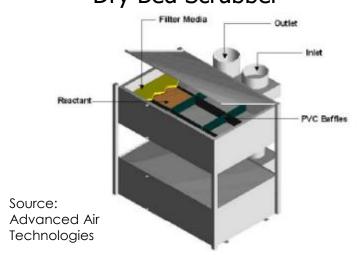


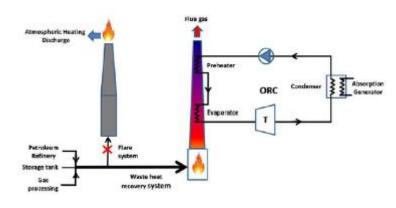


Control Technologies

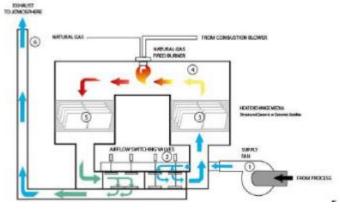
- Typically apply to sources regulated under USEPA's NESHAP rules
- Control technologies
 - Reduce emissions from industrial processes, prior to venting to atmosphere
 - Are typically subject to permitting and monitoring requirements




Examples of Control Technologies


Wet Scrubber

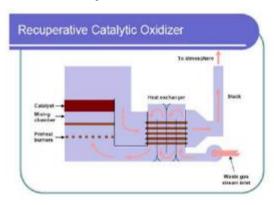
Dry Bed Scrubber



Thermal Flare

Source: Semmari and colleagues

Thermal Oxidizer


Source: Kono Kogs

Bubbling Scrubber

Source: Cosmed

Catalytic Oxidizer

Source: USEPA

Training Roadmap

ETO Training Introduction

Sources, Uses, & Exposure Pathways

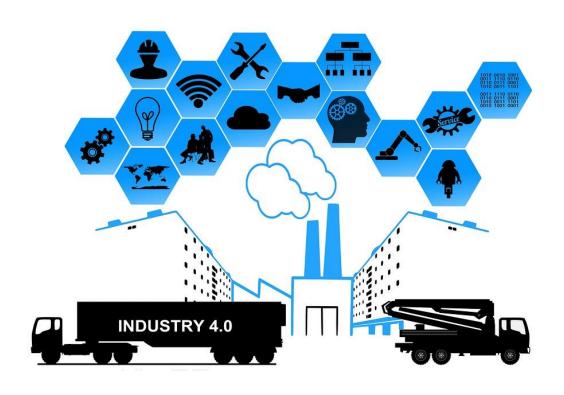
Community & Stakeholder Communications

Control Technologies

Sampling & Monitoring

Regulations

Continuous Outreach & Resources

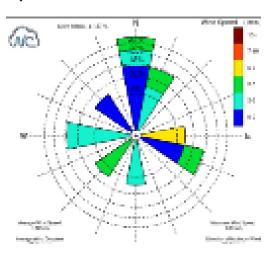

Q&A

How do you Know Where to Start?

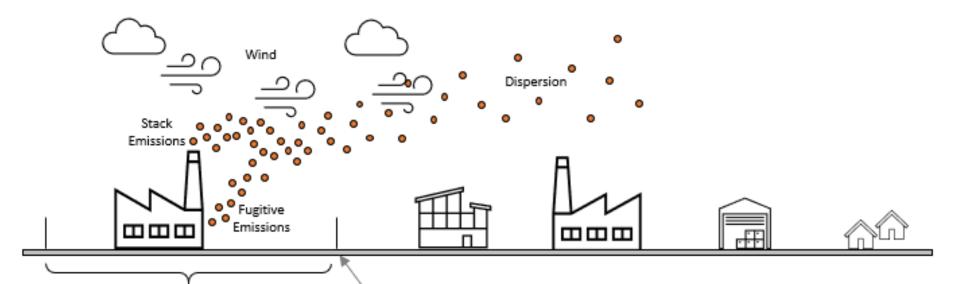
- Review of Air Permits and Source Inspections
- Research Similar Industries
 - What Emission Factors Exist?
- Emissions Inventories
- Modeling
 - To determine if site-specific or community sampling is necessary
- Stack Testing

What Types of Data are Available?

Modeling


- Estimate EtO concentrations across broad areas
- Calculate and predict EtO concentrations, including below the method detection limit, allowing study of a wider range of potential risks
- Estimate long-term average concentrations
- Used for risk assessments
- Identify areas where monitoring may provide more detailed information
- Generally, a health-protective estimate

Measurement


- Determine EtO concentration at specific locations and times
- Control and limit model inputs
- Calibrate models
- Quantify any change in concentrations of ethylene oxide in the ambient air
- Confirm facility reported emissions

What are your Project Goals?

Inside Facility Boundary:

Monitoring to show compliance, gather inputs for models

Measurement Locations:

Stack / Source Near Source

Work Areas

Sampling Typically Performed by:

Facility

Fenceline:

Monitoring to show compliance, confirm model results

Measurement Locations:

Points along facility boundary

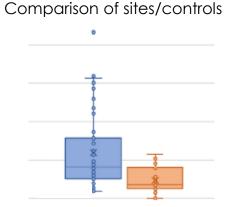
Sampling Typically Performed by: Facility or States

Outside Facility Boundary:

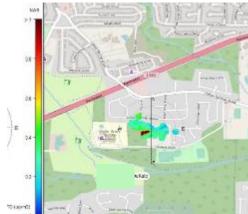
Monitoring to calibrate models, provide actual concentrations at specific times and locations, reflect all sources

Measurement Locations:

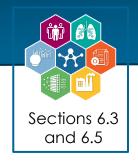
Ambient air monitoring network stations, temporary monitoring points, or mobile monitoring points


Sampling Typically Performed by:

States


How will the Data be Used?

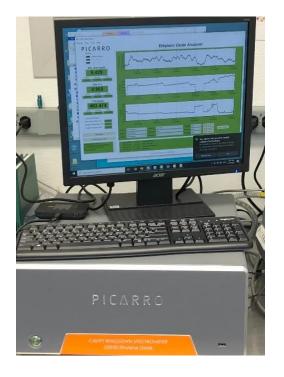
- Understanding frequency and purpose of collection are critical
- Continuous or sampling over production cycle may be sufficient to characterize emissions and effectiveness of control equipment
- Chronic risk assessments
 - Single grab sample or small groups of samples are not sufficient
- Ambient concentrations at fence line or community
- Determine emission rate emitted from the facility at stack



What Sampling Equipment to Use?

TO15/TO15A Canister Sampling

Passive Sampling

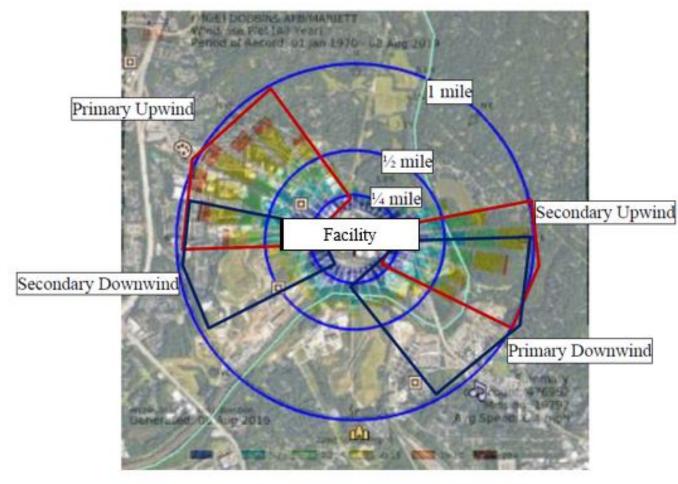

Source: MI EGLE

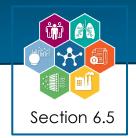
Active (pressurized) Sampling

Source: GA EPD

Continuous Sampling

Source: GA EPD

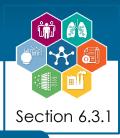



Logistical Considerations for Sampling

- Breathing zone
- Obstructions in monitoring pathway
- Dispersion modeling to choose sampling locations
- Operations of Nearby Facilities
- Quality Assurance
- Sampling Duration

What are Some Challenges of Sampling?

Understanding of limitations is critical


Research is ongoing to overcome issues and develop better methodology

Recommend data validation and potential biases be accounted for in data reporting

Source Testing

Source (in-stack) Monitoring

Continuous Emission Monitoring Systems (CEMS)

Stack Testing – Periodic testing for regulatory compliance

Federal or state/local regulation for the appropriate test method

Regulatory Analytical Challenges

Is the method sensitive to interferences?

Is there any occurrence of EtO formation in the canisters?

Is the operation of any EtO measurement with field analysis performed by qualified individual?

EtO Uncertainties – Background EtO

Background EtO: unsure what is being measured if we don't know where it's coming from

Studies have detected EtO in rural and rural settings with no known source of EtO in the vicinity

Analytical limitations make understanding the background challenging

Questions

Ethylene Oxide (EtO) Guidance

https://eto-1.itrcweb.org

Knowledge check: Cannot use short term sampling to calculate risk, must use modeling.

Training Roadmap

ETO Training Introduction

Sources, Uses, & Exposure Pathways

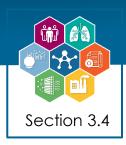
Community & Stakeholder Communications

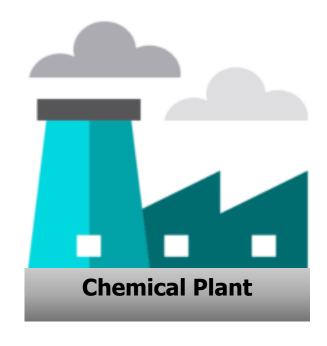
Control Technologies

Sampling & Monitoring

Regulations

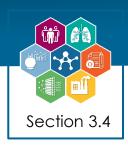
Continuous Outreach & Resources


Q&A



Regulatory Framework – Categories

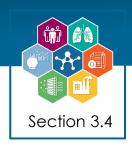
EtO Sterilization Industry


Note: Regulatory information presented is current as of 11/27/2023.

Regulations – Chemical Manufacturing Industry

National Emission Standards for Hazardous Pollutants (NESHAP) from the Synthetic Organic Chemical Industry (SOCMI)

- Spans four (4) Subparts of 40 CFR Part 63 (Subparts F, G, H, and I)
- Also known as SOCMI and the Hazardous Organic NESHAP, or HON


NESHAP Emissions for Polyether Polyols Production

• 40 CFR Part 63 Subpart PPP

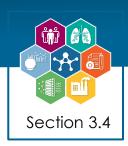
National Emission Standards for Hazardous Pollutants (NESHAP) from NESHAP for Miscellaneous Organic Manufacturing

- 40 CFR Part 63 Subpart FFFF
- Also known as the Miscellaneous Organic NESHAP, or MON

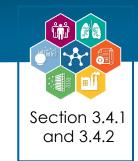
Regulations – Chemical Manufacturing Industry

NESHAP Subpart

	F	G	Η	I	PPP	FFFF
Also Known As		SOCMI / HON				MON
Date of Current Rule		12/21	3/27/2014	8/12/2020		
Under Review?		Yes				No
Source Status		Major			Major	Major


NESHAP – National Emission Standards for Hazardous Air Pollutants

Regulations – Sterilization Industry


Ethylene Oxide Emissions Standards for Sterilization Facilities

• 40 CFR Part 63 Subpart O

NESHAP for Hospital Ethylene Oxide Sterilizers

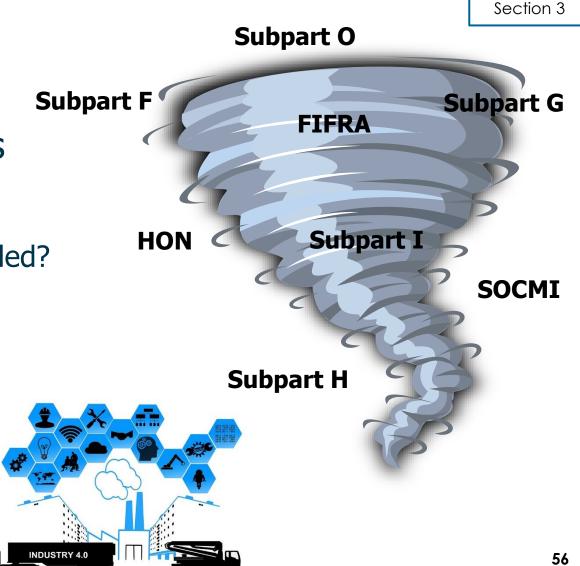
- 40 CFR Part 63 Subpart FFFF
- Also known as the Miscellaneous Organic NESHAP, or MON

Regulations – Sterilization Industry

NESHAP Subpart

	0	WWWWW	
Date of Current Rule	4/7/2006	12/28/2007	
Under Review?	Yes	No	
Source Status	Major & Area (>1 ton/year)	Area	

NESHAP – National Emission Standards for Hazardous Air Pollutants



Case Study – Which Requirements Apply/Where to Start?

Section 3

- State issued permits
- State air toxics regulations
- Control device operating parameters
- Stack test data
 - Does data exist or is a new stack test needed?
- Federal Regulation
 - NESHAP Subpart O
 - Area Source or Major Source?
- FIFRA
 - Who enforces this in your region or area

Poll Question

What EtO regulations are you aware of?

□ Short answer

Training Roadmap

ETO Training Introduction

Sources, Uses, & Exposure Pathways

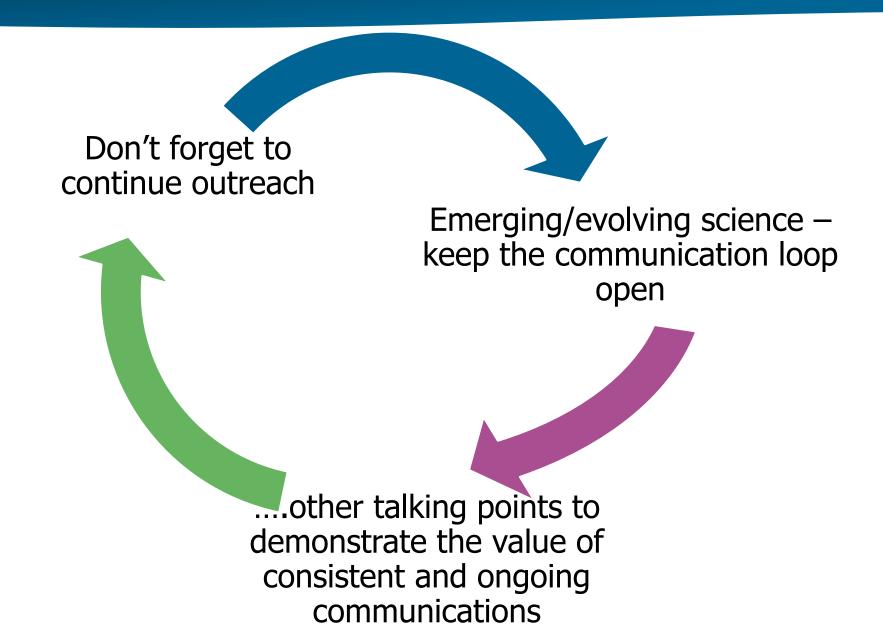
Community & Stakeholder Communications

Control Technologies

Sampling & Monitoring

Regulations

Continuous Outreach & Resources


Q&A

Stakeholder – Continuous Outreach

Risk Communication

- Webpages & fact sheets
- Community is an important source of information
- ITRC Risk Communication Toolkit https://rct-1.itrcweb.org/

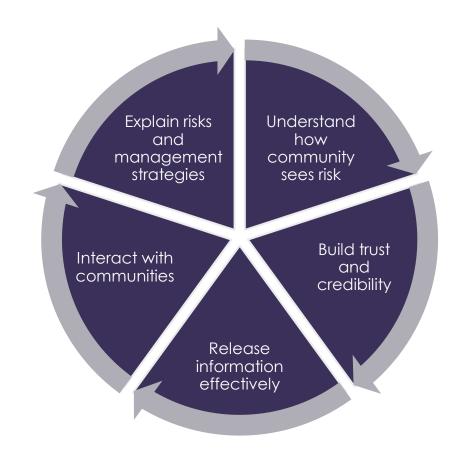
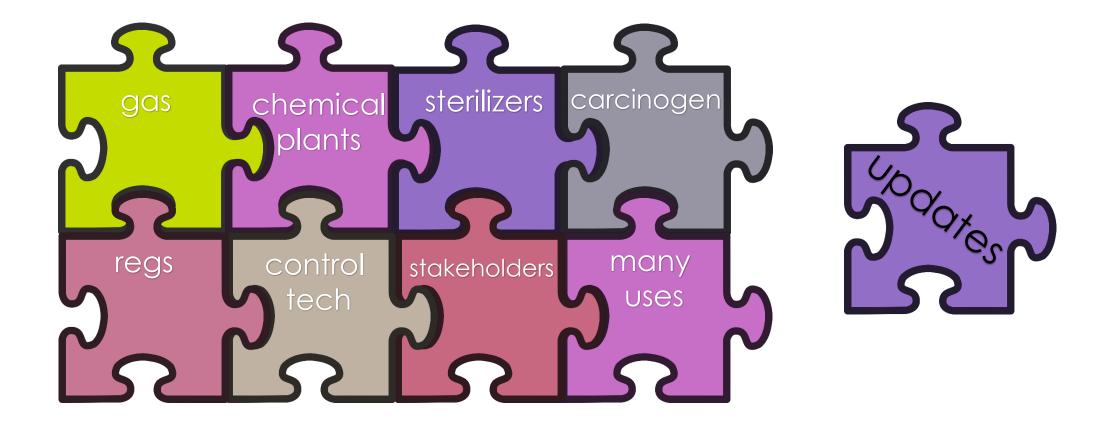


Figure 1. Five Key Aspects of Risk Communication

Additional Resources

Sections 7.2.2-7.2.4

USEPA Ethylene Oxide (EtO) <u>FAQs</u>


- ATSDR <u>Clinician Brief</u>: Ethylene Oxide, ATSDR's <u>Community Engagement</u> <u>Playbook</u>
- OSHA <u>Safety Data Sheet</u> for Ethylene Oxide
- U.S. Food and Drug Administration (FDA)
- CDC <u>Toxicological profile</u> for Ethylene Oxide
- States: Refer to the Regulatory Framework Section

Training Wrap-Up

Questions

Ethylene Oxide (EtO) Guidance

https://eto-1.itrcweb.org

